Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas.

نویسندگان

  • Nikolaus R McFarland
  • Suzanne N Haber
چکیده

Thalamic relay nuclei transmit basal ganglia output to the frontal cortex, forming the last link in corticobasal ganglia circuitry. The thalamus regulates cortical activity through differential laminar connections, providing not only feedback, but also initiating "feedforward" loops, via nonreciprocal projections, that influence higher cortical areas. This study examines the organization of thalamic connections with cortex from basal ganglia relay nuclei, including ventral anterior (VA), ventral lateral (VL), and mediodorsal (MD) nuclei, in the Macaque monkey. Anterograde and bidirectional tracer injections ([3H]-amino acids, dextran conjugates of Fluorescein, Lucifer Yellow or FluoroRuby, or wheat germ agglutinin) into discrete VA/VL, MD, and frontal cortical sites demonstrate specific thalamocortical connections. VL projections target caudal motor areas (primary, supplementary, and caudal premotor areas), whereas VA projections target more rostral premotor areas (including cingulate and presupplementary motor areas) and MD projects to dorsolateral and orbital prefrontal cortices. Thalamocortical projections innervate cortical layers I and III, and to a lesser extent, layer V. In motor areas layer I projections are more extensive than those to layer III (and V). The complex laminar organization of projections from specific thalamic sites suggests differential regulation of cortical function. Injections of bidirectional tracers into thalamic and frontal cortical sites also show that in comparison to thalamocortical projections, corticothalamic projections to VA-VL and MD are more widespread. These findings demonstrate both reciprocal and nonreciprocal components to the thalamo-cortico-thalamic relay. Together, these experiments indicate a dual role for VA-VL and MD nuclei: (1) to relay basal ganglia output within specific cortical circuits and (2) to mediate information flow between cortical circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The primate basal ganglia: parallel and integrative networks.

The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal co...

متن کامل

Cortical connections of the rat lateral posterior thalamic nucleus.

Spatial processing related to directed attention is thought to be mediated by a specific cortical-basal ganglia-thalamic-cortical network in the rat. Key components of this network are associative cortical areas medial agranular cortex (AGm) and posterior parietal cortex (PPC), dorsocentral striatum (DCS), and lateral posterior (LP) thalamic nucleus, all of which are interconnected. Previously,...

متن کامل

Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate.

Current models of basal ganglia circuitry primarily associate the ventral thalamic nuclei with relaying basal ganglia output to the frontal cortex. However, some studies have demonstrated projections from the ventral anterior (VA) and ventral lateral (VL) thalamic nuclei to the striatum, suggesting that these nuclei directly modulate the striatum. VA/VL nuclei have specific connections with pri...

متن کامل

The cortico-basal ganglia integrative network: the role of the thalamus.

The thalamus is a critical component of the frontal cortical-basal ganglia-thalamic circuits that mediate motivation and emotional drive, planning and cognition for the development and expression of goal-directed behaviors. Each functional region of the frontal cortex is connected with specific areas of each basal ganglia (BG) structure and of the thalamus. In addition, the thalamus sends a mas...

متن کامل

Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization.

During sleep, the electroencephalogram exhibits synchronized slow waves that desynchronize when animals awaken [desynchronized states (DSs)]. During slow-wave states, the membrane potentials of cortical neurons oscillate between discrete depolarized states ("Up states") and periods of hyperpolarization ("Down states"). To determine the role of corticothalamic loops in generating Up/Down oscilla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2002